Michael Tsapatsis (PI) and Prodromos Daoutidis (co-PI)
Drs. Fernando Lima (Presenter) and Bahman Elyassi
Department of Chemical Engineering and Materials Science
University of Minnesota

DE-FE0001322 Hydrogen Selective Exfoliated Zeolite Membranes

Proposal in response to Funding Opportunity NO. DE-PS26-08NT00699-01

Pre-combustion carbon capture technologies for coal-based gasification plants

Topic Area 1 – High-Temperature, High-Pressure Membranes

Hydrogen Selective Membranes in IGCC Plants

Challenges under WGS conditions of IGCC plants

- high temperature and pressure
- presence of impurities (H₂S)

Bracht et al., **Energy Convers.Mgmt** <u>38</u>, S159-164 (1997)

IGCC w/ WGS MR

IGCC efficiency

without CO₂ capture: 46.7%

with conventional CO₂ removal: 40.5%

With WGS MR and CO₂ recovery: 42.8% based on

- 35 atm feed, 20 atm permeate (15 atm pressure drop)
- 330°C in the feed
- hydrogen/carbon dioxide selectivity = 15
- hydrogen permeability = 0.2 mol/(m².s.bar)

Membrane Area Needed: 2,200 m² (400MW)

Bracht et al., **Energy Convers.Mgmt** 38, S159-164 (1997)

Motivation: Hierarchical Manufacturing of Zeolite Films

Crystal Structure (nm)

For a Review:

Mark A. Snyder, Michael Tsapatsis, Angew. Chem. Int. Ed. 2007, 46, 7560–7573

Shaped Crystal (10-100nm)

Oriented
Monolayer of
Crystals
(meso-macro)

AIChE Journal, 42(11), 3020-3029 (1996)

Chemistry of Materials <u>10</u>, 2497-2504 (1998)

Science 300:(5618), 456-460 (2003)

Angew. Chem. Int. Ed. <u>45,</u> 1154-1158 (2006)

Nature Materials, <u>7(12)</u>, 984-991(2008)

Science 325 (5940), 590-594 (2009)

Intergrown

Film

Layer by Layer Deposition (JACS 132(2), 448-449 (2010))

5 layers of MCM-22/surfactant-templated-mesoporous-silica on porous alumina

Comparison of Ideal Selectivity

The ideal selectivity $(H_2/CO_2 \text{ and } H_2/N_2)$ increased monotonically with temperature and improved with the number of deposition cycles.

MCM-22/Silica Membranes for Hydrogen Separations

Choi J. and Tsapatsis M. **Journal of the American Chemical Society** 132(2), 448-449 (2010)

Experimental Demonstration of Selective Flake Composite Concept

Advantages by Reduction in Flake Thickness

Membrane Preparation Procedure

Purified nanosheets in toluene were filtered through porous alumina supports and then secondary growth was conducted.

- Exfoliated ITQ-1 on Alumina Disk
- After Secondary Growth of ITQ-1

Performance of ITQ-1 Membrane

(To be published)

Summary of Experimental Achievement & Future Work

Achievement

 prepared hydrogen permselective ITQ-1 membranes using exfoliated MWW structure

Future Work

- working towards meeting proposed target for H₂/CO₂ selectivity
- developing ITQ-1 membranes on tubular supports and investigating their performance at higher temperatures

Hydrothermal Treatment Conditions

■ Temperature: 350°C

Pressure: 10 bar (95% steam, 5% nitrogen)

Samples were analyzed in 21 days intervals

Hydrothermal Stability Setup

Summary of Stability Analysis & Future Work

- Achievement
 - developed material showing high hydrothermal stability

- Future Work
 - performing hydrothermal stability studies on other layered zeolites

Membrane Reactor Modeling: Objectives and Approach

- Develop a WGS membrane reactor (MR) model
 - perform simulation and optimization studies
 - analyze the effect of reactor design on performance
 - integrate model in IGCC unit
- Determine the membrane characteristics necessary to
 - achieve DOE R&D target goal of 90% CO₂ capture ^{(1),(2)}
 - obtain desired H₂ recovery value of 95% (1)
- Satisfy transportation safety constraints of CO₂ capture stream ⁽¹⁾
 - low CO concentration obtained by reaching desired CO conversion value of 98%
 - H₂ molar fraction below flammability limit of 2%
- Minimize membrane cost as a function of surface area required
- Received input from DOE/NETL personnel (Drs. John Marano and Jared Ciferno)
- (1) Marano, Report to DOE/NETL (2010)
- (2) Marano and Ciferno, Energy Procedia 1, 361-368 (2009)

MR Modeling Assumptions and Simulation Set Up

- - 1-dimensional shell and tube reactor
 - catalyst packed in the tube side
 - thin membrane layer placed on surface of tube wall
 - sweep gas flows in the shell side
 - plug-flow operation for both shell and tube
 - constant temperature and pressure
 - steady-state operation
 - ideal gas law
 - (1) Marano, Report to DOE/NETL (2010)
 - (2) Choi and Stenger, **J. Power Sources** <u>124</u>, 432-439 (2003)
 - (3) Amelio et al., **Energy Convers. Mgmt** <u>48</u>, 2680-2693 (2007)
 - (4) Boutikos and Nikolakis, J. Membr. Sci. 350, 378-386 (2010)

- Flow configurations
 - co-current
 - counter-current
- Simulation conditions from literature
 - catalyst type and reaction rate (2)
 - reactor dimensions (3)
 - conditions consistent with IGCC specifications
- Developed model validated using published simulation data (4)

Counter-current Simulation Results: Concentration Profiles

Counter-current Case: Species Concentration in Tube and Shell [mol/cm³] vs. Reactor Length

Simulation conditions

- ◆ MR length of 30 cm
- $Q_{H2} = 0.1 \text{ mol/(s.m}^2.atm)$
- ◆ S_{H2/all} = 1000
- ♦ steam as sweep gas

Counter-current Simulation Results: Changing Membrane Selectivity

Membrane Reactor Parameter	Value [%] (S _{H2/all} = 1000)	Value [%] (S _{H2/all} = 100)	Value [%] (S _{H2/all} = 10)	Target [%]
$X_{CO} = \frac{CO \text{ converted}}{CO \text{ in feed}}$	99.84	99.34	95.02	98
$R_{H_2} = \frac{H_2 \text{ in permeate}}{H_2 + CO \text{ in feed}}$	99.06	99.00	97.21	95
$C_{CO_2} = \frac{CO + CO_2 \text{ in retentate}}{CO + CO_2 \text{ in feed}}$	98.97	90.15	29.07	90
$P_{CO_2+H_2O,R} = \frac{CO_2+H_2O \text{ in retentate}}{\text{total in retentate}}$	96.31	96.62	98.30	95
$P_{H_2,P} = \frac{H_2 \text{ in permeate}}{\text{total in permeate}}$	44.27	43.14	34.05	44
$y_{H_2,R} = \frac{H_2 \text{ in retentate}}{\text{total in retentate}}$	0.66	0.51	0.01	(≤)2

Membrane Reactor Optimization: Problem Formulation

- Typical WGS reactor design alternatives (1),(2)
 - pre-shift, membrane separator, WGS reactor
 - pre-shift, WGS membrane reactor
 - WGS reactor, membrane separator
 - stand-alone WGS membrane reactor
- Address all alternatives in one formulation
- Optimization problem statement (3)

$$\min_{l_1,l_2,l_3,l_4,l_5} \left[\mathsf{cost}_m\text{-}\,\mathsf{credit}_{\mathsf{H}_2} \right]$$

s.t.: target specifications and constraints

in which $cost_m = f A_m$ $credit_{H_2} = f R_{H_2}$

		112 1001	١.	<i>i</i> o/kg	
0)	I ₁	ı	2 L	
		L _{r1}		L _{r2}	
feed	•				retentate
	•				
sweep		ATTITITE OF THE PARTY OF THE PA	1//	111111	permeate _

Parameter

zeolite

membrane

H_a fuel

- (1) Marano and Ciferno, Energy Procedia 1, 361-368 (2009)
- (2) Bracht et al., **Energy Convers. Mgmt** 38, S159-164 (1997)
- (3) Lima et al., In preparation (2011)

Price [\$]

1.000 -

10,000/m²

1 78/kg

Membrane Reactor Optimization: Results

- Benchmark for study: improve successful counter-current case
- Problem initial guess: MR configuration

Solution for 1 year operating cycle

 $I_2 = 28.9$

- Length of membrane layer: $L_{m1} + L_{m2} = 22.7$ cm
- Solution indicates
 - optimal design: short pre-shift reactor followed by long MR
 - potential savings in membrane material (≈ 25%)
 - large-scale (1) $(A_m \approx 2000 \text{ m}^2) \Rightarrow \text{savings as high as } 5,000,000$
- (1) Bracht et al., **Energy Convers. Mgmt** 38, S159-164 (1997)

Modeling Conclusions & Future Work

Conclusions

- MR model developed for simulation and optimization studies
- simulation results indicated successful counter-current cases
- optimization formulation guided selection of optimal reactor design for WGS reaction

Future Work

- perform preliminary cost analysis using MR model
- develop IGCC system model
 - first step: Matlab model of separate units (gasifier, ASU, turbines, and heat exchangers)
 - simplified gasifier model developed assuming Conoco-Phillips design (1)
 - integrate units (including MR) in IGCC plant (Matlab and Aspen simulations)

(1) Jillson et al., **J. Proc. Cont.** 19, 1470-1485 (2009)